Basic Triangle Formulas & Identities
Area of Triangle = ½ (Any Side) × (Corresponding Altitude)
Heron’s Formula
∆ =√(s(s – a)(s – b)(s – c))
S = ½ (a + b + c)…….. Semi-Perimeter
Where a, b, c……sides of a ∆
Area of an Equilateral Triangle (∆)
Area= (√3a²)/4
Centroid (G) of a Triangle
G = ({x1+ x2+ x3 /3}; {y1 + y2 + y3} /3 )
Area = ½ [x1(y2 – y3) + x2(y3 – y1) + x3(y1 – y2)]
Length of Medians of a Triangle
L1 = ½ (√(2b² + 2c² – a²) )
L2 = ½ (√(2c² + 2a² – b²) )
L3 = ½ (√(2a² + 2b² – c²)
4(L12 + L22 + L32) = 3(a² + b² + c²)
Length of Angle Bisector (x)
x = (2bc/ (b + c)) cos (A/2)
Sine Rule
a/sin A = b/sin B = c/sin C = 2R
Where R is radius of Circumcircle
Cosine Rule
Cos A = (b² + c² – a²)/2bc
Cos B = (c² + a² – b²)/2ca
Cos C = (a² + b² – c²)/2ab
Area (Δ)
∆ = 1/2 ab sin C = 1/2 bc sin A = 1/2 ca sin B
∆ = abc/4R
r = ∆ /s
Where R = Circumcircle Radius
r = Incircle radius
Projection Formula
a = b cos C + c cos B
b = c cos A + a cos C
c = a cos B + b cos A
Tangent Rule
tan ((B – C)/2) = (b – c)/(b + c) cot (A/2)
tan ((C – A)/2 ) = (c – a)/(c + a) cot (B/2)
tan ((A – B)/2) = (a – b)/(a + b) cot (C/2)
M-N Theorem
(m + n) cot θ = m cot α – n cot β
(m + n) cot θ = m cot B – n cot C
Checkout these Videos